

# The SPoRT Center – Infusing NASA Technology Into NWS WFOs

Dr. Gary Jedlovec, NASA / MSFC Earth Science Office

Mission of the SPoRT Center: Apply NASA measurement systems and unique Earth science research to improve the accuracy of short-term (0-24 hr) weather prediction at the regional and local scale

SPoRT website

http://weather.msfc.nasa.gov/sport
Collaborative Partner Blog

http://www.nsstc.uah.edu/sportblog/



SPORT – Short-term Prediction and Research Transition





## **How SPoRT Got Started**

#### 2001 - Launch a series of EOS satellites

- to study the Earth's climate, monitor its changes, and to assess anthropogenic affect
- high resolution sensors which measure unique processes in the atmosphere, on the Earth, and in the oceans

# 2002 – MSFC proposed to demonstrate the utility of these climate instruments to observe small scale weather features often missed by NOAA weather satellites

- high resolution multispectral data complements geostationary (high temporal resolution)
- new products from additional channels
- assimilation of data into forecast models could significantly improve weather forecasts

### **2003** - MODIS and total lightning data in AWIPS

The NASA research instruments serve as prototypes for future NOAA sensors







# **Accomplishments**

- Established a working paradigm for transition of research capabilities to operations – a foot bridge over the "valley of death"
- Demonstrated key <u>improvements to</u> <u>forecast problems</u> as a result of the realtime use of NASA observed and prototype data and special assimilation procedures and modeling scenarios



- The transitioned data and products <u>regularly improve weather</u> <u>diagnostic and forecast capabilities at the WFOs</u> in the Southern Region
- Developed <u>user advocacy</u> for new products, many of which will become future NOAA operational capabilities
- Trained forecasters on use of new technologies
- Developed, tested and <u>transitioned various tools to collaborative</u> organizations for application to their transition activities





## More than a Test Bed!

#### SPoRT is an <u>end-to-end</u> research to operations activity!

- explore cutting edge research relevant to operational weather forecasting
- work with end users to match forecast problems to capabilities / data

# Demonstrate feasibility of new data / capability to address forecast problem in a simulated operational environment – this is a test bed function

- real-time data and products timely dissemination capability
- display in operational system visualization, interoperability with other products
- assessment and impact on forecast problem
- end user involvement critical to success

### Transition of experimental data to operational environment

- mechanics of transition
- training and product impact and assessment end user involvement







## **Interactions with WFOs**

#### Keys to success

Link data / products to forecast problems
Integrate capabilities into AWIPS
Provide training / forecaster interaction & feedback



#### Focused research

Exploit use of satellite observations for diagnostic analysis and nowcasting (MODIS, AMSR-E, and AIRS, total lightning products, special GOES products)

- timing and location of thunderstorms, severe weather, and precipitation
- diagnostic analysis of current conditions, cloud cover, visibility, fog, etc. (esp. at night), morning minimum temperatures (and its local variations)
- coastal weather processes (sea breeze convection / temperatures), off-shore precipitation processes
- weather in data void regions

Unique modeling configurations

- coupled WRF / LIS (satellite data to improve surface parameterizations)
- use of high resolution SST in regional models WRF, WRF NMM (EMS)

Data assimilation studies

- AIRS radiances in GSI / WRF NAM
- AIRS profiles in WRF / Var







# **TPW Mapping in Data Poor Regions**





Total precipitable water (TPW) and anomaly product used to monitor atmospheric rivers and moisture sources in data sparse regions (e.g., oceans, SW U.S.)

- CIRA/CSU & NESDIS
- combined SSM/I, AMSU, GPS observations
- 4 times daily
- anomaly is departure from previous week's values

Similar product now available in AWIPS





## **Other Products**

## **Nowcasting Products**

- convective initiation products for thunderstorm development
- flash density of total lightning (LMA) relation to severe weather

**Unique GOES aviation products in advance of AWIPS Builds** 





High resolution thermal channels allow for night time fog and low clouds detection which limits surface visibility.





# Total Lightning Data from NASA's Lightning Mapping Array: **Severe Weather Forecasting**



WHY

Demonstrating utility of NASA lightning data from ground-based systems helps ensure success of future satellite measurements

- Severe weather affects the lives of most people in U.S.
- Develop and advance the use of NASA total lightning data for severe weather forecasting
- Ground-based systems serve as prototypes for advanced space-based systems
- •Improved severe weather forecasts save lives

WFO Huntsville: "I believe the flash density rates were the primary factor in holding off on a warning." WFO Nashville: "the LMA often clos 'tip the scales' towards issuing a warning"



Large increases in total lightning prior to severe weather



transitioning unique NASA data and research technologies



# Data Assimilation and Modeling Transitions

### <u>Unique datasets</u>

 High resolution MODIS / AMSR-E composite replaces RTG SST fields in regional forecast models leading to improved coastal weather forecasts –available to WFOs via WRF EMS, NSSL Spring Program ensembles, and daily runs





### Data assimilation approaches

- Assimilating AIRS radiances in WRF (GSI) and profiles with WRFvar lead to regional forecast model improvements
- Success with profiles drives interest from others

## Research model applications

 Implement coupled WRF / LIS for better characterization of regional lands surface changes from climatology – snow cover, vegetation changes







# Use of Experimental Data in Operations

## **Must dos for SPoRT:**

- Continuous interaction with end users key to success
- Understand needs, the operational environment, and forecast constraints
- Transition and implementation in AWIPS /AWIPS II environment
- Training on products
- Surveys to assess usage
- Site visits
- Monthly collaboration calls
- Collaborative blog (http://weather.msfc.nasa.gov/sportblog)







## The Next 5 Years

Continue to demonstrate utility of current and future NASA observations

**Consider IASI in addition to AIRS** 

### **AWIPS II and NPOESS**

- •Transition current capabilities to AWIPS II (Fall 09)
- Demonstrate for NPP by providing VIIRS and CrIMSS data and products to WFOs

Work more collaboratively with regional centers and other testbeds (DTC, JHT, HMT, HWT, etc.)



